
Ranking Item Features by Mining Online User-Item

Interactions

Sofiane Abbar†, Habibur Rahman‡,†, Saravanan Thirumuruganathan‡,†, Carlos Castillo†, Gautam Das‡,†

†Qatar Computing Research Institute

‡University of Texas at Arlington
sabbar@qf.org.qa

{habibur.rahman@mavs,saravanan.thirumuruganathan@mavs}.uta.edu, gdas@cse.uta.edu

Abstract—We assume a database of items in which each item
is described by a set of attributes, some of which could be multi-
valued. We refer to each of the distinct attribute values as a
feature. We also assume that we have information about the
interactions (such as visits or likes) between a set of users and
those items. In our paper, we would like to rank the features of
an item using user-item interactions. For instance, if the items are
movies, features could be actors, directors or genres, and user-
item interaction could be user liking the movie. These information
could be used to identify the most important actors for each
movie. While users are drawn to an item due to a subset of
its features, a user-item interaction only provides an expression
of user preference over the entire item, and not its component
features. We design algorithms to rank the features of an item
depending on whether interaction information is available at
aggregated or individual level granularity and extend them to
rank composite features (set of features). Our algorithms are
based on constrained least squares, network flow and non-trivial
adaptations to non-negative matrix factorization. We evaluate our
algorithms using both real-world and synthetic datasets.

I. INTRODUCTION

The fundamental maxim of any successful business is
“Know Your Customer”. In other words, knowing (a) what are
the items that users like? and (b) why do they like them? Previ-
ously such understanding involved tedious and time-consuming
methods such as customer surveys, focus groups or site visits.
However, the advent of web has now enabled businesses to
easily quantify what items users like by measuring online
interactions between users and the items. Such interactions
might involve users visiting the item webpages or rating them.
Recently, it has become easy for businesses to put Facebook
“Like” buttons1 or “+1” buttons2 from Google over their item
webpages which can be clicked by users to demonstrate they
like an item.

While the various user-item interactions such as visits,
likes, +1s and ratings provide a rich window into what users
like, answering the second question of why a user likes the
items is much trickier. If each user had provided elaborate
comments or reviews detailing why she liked the item, then
identifying the most important features can be solved by
extracting semantic information using text mining and infor-
mation extraction [10], [11]. However, online users are prone
to be laconic - the fraction of users that provide detailed
comments is minuscule [17]. Hence, the vast majority of user-
item interaction information is in its most rudimentary form -

1http://developers.facebook.com/docs/reference/plugins/like/
2https://developers.google.com/+/web/+1button/

where we only know whether users visited or liked an item or
not.

We consider a database of items, where each item is
described by a set of attributes, some of which are multi-
valued. We refer to each of the distinct attribute values of an
item as features (or equivalently, an item can be described
as a set of features). For instance, in a movie streaming site
such as Netflix, the items could correspond to movies and
attributes might include actors, director, genres, etc. Notice
that actors and genres are multi-valued attributes as each
movie could have multiple actors/genres associated with it.
For an automotive classified site such as cars.com, the items
correspond to cars and attributes include the make, model,
transmission type, etc. Multi-valued attributes could include
its color, customizations etc. Collectively, the set of attribute
values forms the features of a given car.

Users are drawn to an item due to a small subset of
its features [8] and provide a coarse feedback for the entire
item by interacting with it. For Netflix, a simple user-item
interaction would involve whether the user watched the movie.
While some users could have watched the movie because it
starred Tom Hanks, others could have watched it because, in
addition, it was also directed by Steven Spielberg. Similarly,
while some users might buy a car due to its manufacturer,
others might buy it for the model and transmission type.

While significant previous work exists in the general area
of mining user-item interactions, our focus in this paper is the
investigation of a novel problem: how to rank the features
of each item from user-item interactions. In particular, we
wish to determine a ranking of each item’s features where
the ranking reflects the contribution of each feature to the
popularity (such as number of visits) of the item among the
users. Such analysis will enable the owners of the database
determining the reasons for the popularity (or lack thereof) of
certain items. For example, the Netflix website can get a sense
of the most popular actors for each movie, or even the most
popular actors globally. A car seller, can identify the set of
features of a car that is popular among buyers.

We focus in this paper on the scenario where we have
access to rudimentary user-item interaction data (for e.g, we
only know whether users visited or liked certain items or not).
Such information is available at either (a) individual level:
when the user is identifiable in each interaction (such as user
u visited item i), or (b) aggregated level: when the user is not
identifiable, and we only know the aggregated number of users
who interacted with an item.

chato@acm.org,

978-1-4799-2555-1/14/$31.00 © 2014 IEEE ICDE Conference 2014460

a
$$
i 100 visits

b

;;

""
j 1 visit

c

;;

Fig. 1. Database with 3 features and 2 items.

Thus, the principal problem investigated in this paper can
be stated as follows:

FEATURE RANKING (FR) PROBLEM: Given a database
where items are described as a set of features, and
rudimentary user-item interactions (either at aggregate
or individual level), identify the most important features
per item (alternatively, a ranked list of features per item).

Challenges. Given a simple user-item interaction data at the
level of visits/likes by users, ranking the features of items is
a challenging problem. There are no direct cues in the users’
feedback that hint about their preferences for certain specific
features - e.g., just the fact that a user has seen/liked a movie
does not give much insight about the specific actor(s) in the
movie that she likes. This indirect expression of preferences
makes ordering the features from the aggregate interaction
extremely challenging.

Clearly, assuming each feature has equal importance in
the popularity of an item is not useful. A more complex
approach for identifying the set of most preferred features is
what we call the tag cloud [16] based approach (as tag clouds
in social media interfaces are often generated this way). It
associates with each feature a score based on its “popularity”
(i.e. cumulative visits of all the items in which the feature is
present) and orders them based on the score. However, this
method has a number of pitfalls.

Illustrative Example. Suppose we have a database with
two items (say movies) i, j which have been visited by 100
and 1 users respectively during a certain time period. Suppose
there are three features a,b, and c (say actors) so that a is
present in item i, b is present in both items i and j, and c is
present in item j. See Figure 1 for a pictorial representation.

Consider the problem of identifying the global ranking of
features. The tag cloud based approach lists the features with a
score proportional to their visit frequency. In our example, the
score of a (resp. c) will be proportional to the number of visits
of i (100) (resp. j (1)), and the score of b is proportional to
visits of i and j (101). But if b is actually the most important
actor, why item j did not get more interactions? The main
problem with this method is the naı̈ve transfer of visit count
from items to their features, based on the premise that all the
features of an item are equally important. Intuitively, in our
example there are two possible explanations: (i) the importance
of feature a to item i is higher than that of b; (ii) by aggregating
the importance of features for all items, feature a has a higher
bearing on the potential visits than that of b and c, because
otherwise item j would have received more visits. While it is

easy to see in our example, generalizing such computations
for large data is not trivial and is the focus of this paper.

Our Approach. We propose a probabilistic model that de-
scribes user-item interactions in terms of user preference
distribution over features and a feature-item transition matrix
that determines the probability that an item will be chosen
given a feature. Given the observed user-item interaction
information at the aggregate (item i was visited by 1000
users) or individual (user u visited item i 10 times) levels,
our aim is to estimate the optimal values for user preference
distribution and feature-item transition matrix. The individual
level is approached as a marginal matrix factorization problem.
In contrast to classical non-negative matrix factorization, our
problem requires additional constraints such as stochasticity,
sparsity and constant values for certain matrix entries requiring
non-trivial adaptations. For the aggregate level, we do not
have adequate per-user visit information to perform matrix
factorization. Instead, we model the problem as estimating
the preferences of an “average” user and the corresponding
feature-item transition matrix. This is formulated as an opti-
mization problem to which we provide an optimal algorithm
based on constrained least squares and a fast approximation
based on network-flow.

Summary of contributions.

• For online databases that track user-item interaction
information, we introduce and motivate the problem
of ranking features of item using only rudimentary
user-item interaction information such as user visits.

• Given aggregate user-item interaction information, we
propose several algorithms based on constrained non-
negative least squares and network-flow.

• If individual user-item interaction information is avail-
able, we design a constrained marginal non-negative
matrix factorization algorithm where a subset of ma-
trix entries could be constant.

• We present a thorough experimental evaluation of our
algorithms using MovieLens/IMDB datasets and study
their scalability using large synthetic datasets.

Roadmap. The remainder of the paper is organized as follows.
Section II presents our notation and framework. We first
discuss the simpler case where each user interacted with the
item due to a single feature. Sections III and IV describe
algorithms for ranking features for the case of aggregate and
individual user-item interaction information respectively. In
section V, we extend our techniques where user could be
interested in a subset of item features. Section VI presents our
experimental evaluation over real-world and synthetic datasets.
Section VII discusses related work followed by conclusions
and future work in section VIII.

II. FEATURE RANKING PROBLEM

In this section, we formalize the data model and describe
the two major problem variants that occur in practice when
solving the feature ranking problem . For the ease of discus-
sion, we assume that each user interacts with an item because
she is interested in a single item feature. As an example, user u

461

watched a movie primarily because it starred actor Tom Hanks.
We describe extensions to our algorithms where an user is
interested in a set of item features in section V.

A. Data Model

Items, Attributes and Features. We assume a database D of
n items (tuples). Each item can be represented by a collection
of attributes some of which could be multi-valued (such as
actors in a movie database). We refer to each of the distinct
attribute values of an item as its features. In other words, each
item can be described as a set of features. The total number
of distinct features for the entire database is represented by l.

User-Item Interaction Data. User-item interactions are rep-
resented differently at aggregated and individual level. Recall
from introduction that we only consider simple interactions
such as visits and likes, and not complex ones such as
comments. At the aggregate level, such interaction data is
represented by an aggregate interaction vector v where each
component corresponds to the interaction count of all users
for a given item. We then normalize the vector to make it
stochastic (i.e. with non-negative entries that add up to 1). In
the individual case, we have a matrix V where each column
provides the interaction count for each item in the database for
a specific user. The numerical value Vik reflects the number
of interactions between item i and user k. More generally,
this represents the relative importance of an item to the user.
The matrix V can then be normalized to get stochastic column
vectors V = {v1, v2, . . . vm} with vk ∈ [0, 1]n. Given V , we
can compute the aggregate interaction vector v as the average
of the vectors vi ∈ V .

B. Terminology

User-Feature Preferences. We denote the number of users
of the database by m. We assume a probabilistic user-feature
preference model in which a user i expresses her preferences
as a probabilistic distribution hi over features. The preferences
of the m users are modelled by an individual preference
matrix H which contains stochastic column vectors for each
user. H = {h1, h2, . . . hm} with hk ∈ [0, 1]ℓ. The aggregate
preference vector of users h is computed as the average of
the vectors in H .

Feature-Item Transition Matrix. We assume a column-
stochastic matrix Wn×ℓ in which rows are items and columns
are features. Each cell Wij contains the probability that an
average user will visit item i if she is interested in feature j.
We assume a known binary matrix Wn×ℓ which contains the
list of all features of each item. We assume that if an item does
not contain a feature, then the probability that a user preferring
that feature to interact with that item is zero, in other words,
W ≤ W . W is not necessarily known, but can be inferred in
certain scenarios as described in subsection III-A.

Sparsity assumption. We assume that among all the ℓ features
available, each user expresses preference over a relatively small
fraction of them: |hk| ≤ s ≪ ℓ. In other words, H is sparse
column-wise. As an example, a typical movie goer is most
interested in few actors, directors or genres.

Model for User Interactions. Our model for interactions
between user and items can be described as follows : the user
picks a feature j with probability proportional to (hu)j . Once
she selects a feature, she selects an item i having that feature
with selection probability equal to Wij . Wij is the conditional
probability that user who has a preference for feature j will
visit item i. In short, the model assumes that users first pick
some features based on their preference and then selects an
item with that feature. The relationships stated above imply
that for every user k = 1, 2, . . . ,m, Whk = vk. Additionally,
WH = V and Wh = v.

Error Measures. Ranking an item’s features involves decom-
posing the interaction information v (resp V) to W and h (resp
H). A natural way to verify the accuracy of our methods is via
reconstruction error – how close the estimated vector/matrix
(Wh or WH) is to the observed interactions(v or V). The
linear system defined by Wh is overdetermined as the number
of equations (one per item) significantly outnumber the number
of variables (one per feature). Hence the reconstruction is never
exact and only produces an approximate estimate. We denote
reconstruction error for our model as Error(v,Wh).

Given two vectors/matrices P and Q, there are a number
of commonly used measures to compute the error between an
observed and the estimated values :

• L2 norm : ||Q− P ||2
• L1 norm : ||Q− P ||1
• KL divergence D(Q||P) :

∑

i Qi log(Qi/Pi)−Qi +
Pi.

C. Problem Variants

In order to rank features of an item, we first need to
estimate the feature-item transition matrix W and aggregate
preference vector h, or individual preference matrix H .
Given a feature transition vector for an item Wi· and h, we
can compute the relative importance of each feature of the
item by performing element-wise multiplication3 between Wi·

and h, Xi = Wi· ◦ h. Then the feature ranking is obtained by
ordering features based on their value in Xi.

There are two major problem variants depending upon the
granularity of user-item interaction information available. In
the first variant, the aggregate interaction vector v is available
to us and we would like to rank the features of an item i,
by estimating item-feature visit vector Xi. We achieve this by
computing W and h from v and calculating Xi as Wi· ◦ h. In
the second variant, we have in our possession, the individual
interaction matrix V and our aim is to compute the vector
Xi. We achieve this by decomposing V to its components -
feature-item transition matrix W and individual preference
matrix H . We then rank the features of an item by computing
the aggregate preference vector h from H and then using the
equation Wi· ◦ h.

Problem 1 (FR-AGG): Given a database D and aggregate
interaction vector v, estimate the item-feature visit vector Xi

3Given two vectors A = (a1, a2, a3) and B = (b1, b2, b3), we define the
element-wise multiplication as the operation that multiplies each component
of A with its corresponding one in B, i.e. A◦B = (a1×b1, a2×b2, a3×b3)

462

(where Xi = Wi· ◦h) for each item i such that Error(v,Wh)
is minimized.

Problem 2 (FR-INDIV): Given a database D and individ-
ual interaction matrix V , estimate the item-feature visit vector
Xi for each item i (where Xi = Wi· ◦ h , h is the average of
columns of H) such that Error(V,WH) is minimized.

III. FEATURE RANKING WITH AGGREGATED

INTERACTION INFORMATION

In this section, we consider the first scenario where only
aggregate interaction information v is available for all items.
Recall that the user interaction patterns can be described by
equation Wh = v, where W is a (n× l) matrix while h (l×1)
and v (n×1) are vectors. We are interested in item-feature visit
vector Xi for each item that can be estimated by the equation
Wi· ◦ h. Henceforth, we will focus on computing W and h
from v for the rest of the section.

Decomposing a single vector v into a matrix W and another
vector h is hard due to the limited information available in v
that could possibly be imprecise. This represents a severely
under-constrained system where there are n× l+ l unknowns
(elements in W and h) that significantly outnumber the number
of observed values in v (i.e. n knowns). This admits an unac-
ceptably large space of solutions. Even the sparsity assumption
made in §II-C does not contribute to any major simplification
of the problem. Hence, we consider two simplified problem
variants where we estimate one of the factors (either W or h)
via external methods, and solve for the other factor optimally.
We first describe an algorithm to estimate aggregate preference
vector h given information about W . We then tackle the
trickier case of estimating feature-item transition matrix W
using h and v. Notice that, for the individual interaction case
where WH = V (where W,H and V are also matrices),
the problem is solvable via non negative matrix factorization
without the need for external methods and is described in
Section IV.

A. Feature Ranking via h Estimation

In this section, our aim is to estimate the aggregate
preference vector h, which can be viewed as the preferences
of an “average” user. In order to estimate h, we require the
item-feature transition matrix W and the aggregate interaction
vector v. W can be computed using a number of application-
specific mechanisms. As an example, if the items were movies
and actors were the features, one way to estimate W is to
provide different weights to actors depending upon whether
had the starring role in the movie. However, if all we have
are the boolean feature-to-item matrix W (denoting the pres-
ence/absence of a feature in an item), we can still approximate
W by assuming uniform preference to each feature and then
making the matrix column-wise stochastic. Given the avail-
ability of W and h, this variant of Problem 1 can be formally
described as :

Problem 3: Given database D, aggregate interaction vec-
tor v and items to features matrix W , determine the aggregate
preference vector h that minimizes reconstruction error,
Error(v,Wh).

In most databases, the number of items n is significantly
higher than the number of features l. In other words, in the

system Wh = v the number of equations is significantly higher
than the number of unknown variables, resulting in an over-
constrained linear system with no solutions. The specific solu-
tion will depend on the choice of error function. The generic
algorithm to solve Problem 3 is described in Algorithm 1.

Algorithm 1 FR-AGG-W

Input: Database D and aggregate visit vector v
1: W = Estimate feature-item transition matrix
2: constraints = { ∀i ∈ [1, n]hi ≥ 0, ||h||1 = 1 }
3: h = argmin

h

Error(v,Wh) subject to constraints

4: Compute Xi = Wi· ◦ h ∀i ∈ [1, n]
5: return X = {X1, X2, . . . , Xn}

The algorithm tries to solve a constrained optimization
problem with non-negativity and stochasticity constraints. Dif-
ferent error functions result in different optimization problems.

A natural error function to use is that of L2 where we
chose the solution that minimizes the reconstruction error
Error(v,Wh) defined as ||v − Wh||2 (L2 error). We can
notice that this formulation is a variant of the Ordinary
Least Squares (OLS) estimator [2] with non-negativity and
stochasticity constraints added. There are two major techniques
to solve this problem. In the first, the constrained least squares
problem is transformed into an alternate formulation that is
unconstrained and can then be efficiently solved. Alternatively,
the problem can be treated as generalized singular value
decomposition problem for the compound matrix constructed
from W and the constraint matrix.

Complexity. The worst case complexity for computing con-
strained least squares is O(n2l+ n3) [2]. However, a number
of efficient iterative algorithms exist that return the solution
within a small number of iterations [2].

Example. We compute the aggregate preference vector for
the running example described in the Introduction (Figure 1).
We constructed W by assuming uniform distribution over pref-
erences. However, even this simple method already provides
a more realistic aggregate preference vector for the example
of Figure 1. Assuming items i and j are equally important for
users interested in their shared feature b, the equations are:

(

a b c

i 1.0 0.5 0.0
j 0.0 0.5 0.1

)

(

ha

hb

hc

)

=

(

100
101
1

101

)

Solving this system provides the value for (ha, hb, hc) as
(0.98, 0.015, 0.005). Features b and c have a relatively minor
importance as otherwise j would have been selected by more
users.

The aggregate preference vector h can also be considered
as representing the global importance of a feature. Algorithm 1
tries to find the appropriate “score” for each feature based on
how well each feature can explain the user-item interaction
count. From this perspective, this problem can be considered to
be related to the traditional feature selection problem where the
features that receive the top score according to some scoring
function are selected for model building. However, there exist

463

a number of issues that prevent us from using feature selection
techniques. First, the key rationale for feature selection (FS)
is to weed out redundant features. Further, our reason for
computing these scores is to perform feature ranking within
each item even when item features are not important globally.
There is no easy way to adapt the FS global scores to perform
feature ranking that is item dependent. However, our model
assumptions allow one to derive item specific feature ranking
as described below.

Feature Ranking. Once h is estimated, then the feature rank-
ing of any item can be computed by performing a component
wise multiplication between the item’s feature transition vector
Wi· and h. Continuing the running example, the weights
of features for item i can be computed as [1.0, 0.5, 0.0] ◦
[0.98, 0.015, 0.005] to obtain [0.98, 0.0075, 0.0]. Reordering
the features based on the weights, we can see that for item
i, feature a has higher rank than feature b.

B. Feature Ranking via W Estimation

In this subsection, we describe algorithms to estimate the
feature-item transition matrix W . Recall that Wij provides the
probability that a user who is interested in feature j will visit
item i. Once the matrix W is estimated, it can be used to rank
an item’s feature using a post processing step. In addition,
matrix entries provide an ordering of items that contain a
feature which might be of independent interest.

This problem variant is applicable in scenarios where we
have access to aggregate preference vector h and aggregate
visit information v. h provides the relative importance of the
different features for the overall population of users (global
ranking of features). This can be obtained from a number
of sources, such as domain experts, historical data, polling,
indirect evidence such as search volume on a search engine,
etc. It must be noted that the ranking must only involve the
subset of features that are present in items, i.e. only the features
where W ij = 1. We assume that the presence or absence of a
feature in an item is available or can be easily identified. We
formally define the variant of Problem 1 below.

Problem 4: Given a database D, aggregate interaction
vector v, boolean feature-item presence matrix W and a
aggregate preference vector h, determine a non-negative item
to feature matrix W ≤W that minimizes reconstruction error,
Error(v,Wh).

We provide two different algorithms for solving Problem 4.
First, we consider the case where the L2 norm is used to
compute the reconstruction error, ||v − Wh||2 and provide
an algorithm FR-AGG-h-LS based on convex quadratic op-
timization. Even though this algorithm provides an optimal
solution, we design an effective and very efficient heuristic
by considering the expression V − Wh for computing re-
construction error. The algorithm FR-AGG-h-NF is based on
network flow approach. We show experimentally the superior
performance of the heuristic with only minor compromise in
reconstruction error.

1) Optimal Algorithm using Convex Optimization: The
first algorithm we describe is based on an extension of the
algorithm for Problem 3. In contrast to estimating the entries

of a vector, we need to estimate the nonnegative entries of
matrix W .

A natural way of modelling the problem is as a convex
quadratic minimization problem with linear constraints. The
objective function minimizes the reconstruction error defined
as ||v − Wh||2. The first constraint ensures that only the
features that are actually present in the item will be ranked
(i.e. features where Wij = 1). As described previously, such
identification can be made by a number of techniques such
as content analysis. This constraint also imposes what can be
considered as a row-wise sparsity constraint that dramatically
reduces the number of unknowns for each item. This is due to
the fact that for most items in the database can be described
with a small subset of features. The second constraint corre-
sponds to the column-wise stochasticity requirements so that
Wij has the interpretation of being the conditional probability
that a user interested in feature j will visit item i. Finally, we
require that each entry in the matrix W be non-negative.

The optimization problem is a special case of Convex
Optimization that can be optimally and efficiently solved by
interior point algorithm described in [15]. The algorithms
work by adapting Newton’s method to barrier functions that
restrict the solution to the feasible region. A pseudocode for
FR-AGG-h-LS is provided in Algorithm 2.

Algorithm 2 FR-AGG-h

Input: Database D and aggregate visit vector v
1: W = Estimate feature-item presence matrix
2: h = Estimate aggregate preference vector
3: constraints = { W ≤ W and ∀j||W·j ||1 = 1 and ∀i, j

Wij ≥ 0 }
4: W = argmin

W

Error(v,Wh) subject to constraints

5: Compute Xi = Wi· ◦ h ∀i ∈ [1, n]
6: return X = {X1, X2, . . . , Xn}

Complexity. Even though the algorithm is known to run in
polynomial time, an exact asymptotic runtime is not known.
The number of iterations taken is known to be proportional
to the square root of the problem size (where problem size
is defined as the number of bits of input to the optimization
problem). A pessimistic estimate of the worst case running
time can be estimated by observing that the problem can be
formulated as a constrained least squares. This is done by
linearizing the matrix W to a vector w′ and converting the
h vector to a banded matrix H ′. In other words, for each row
i, the cells corresponding i ∗ |l| . . . ((i+1) ∗ |l|− 1) is set to h
and the remaining entries are set to 0. The dimension of w′ is
1× nl and that of H ′ is n× nl. This results in a runtime that
is cubic with respect to the size of database - O(n3l + n3).

Example. Using the running example, we can show the utility
of our quadratic minimization based approach. We use the
frequencies of features a, b, and c as the input values for h. By
solving the optimization using the CVXOPT [1] solver, we get
the solution as: Wia = 1.0, Wib = 0.9851, Wjb = 0.01480,
Wjc = 1.0.

464

a
1
$$
i vu

%%

Source

hc

��

hb //

ha

??

b

1 ;;

1
""

Sink

j

vv 99

c

1 ;;

Fig. 2. Augmented graph of the example in Figure 1 for the maximum-flow
formulation.

(

a b c

i Wia Wib 0.0
j 0.0 Wjb Wjc

)

100
201
101
201
1

201

 =

(

100
101
1

101

)

2) An Approximate Algorithm using Network Flow: While
the solution provided by FR-AGG-h-LS is optimal, the time
complexity is cubic in the size of the database. For large
databases, this is prohibitive and provides a motivation for
us to design an efficient heuristic. The primary aim is to
design an heuristic that is efficient (has superior running time)
and effective (has comparable accuracy). A key challenge
in the previous approach was that the optimization, while
convex, was quadratic with complex linear constraints. In this
approach, we relax the optimization goal from minimizing the
reconstruction error to the maximizing the flow of “interest”
from features to items.

We consider a graph-based representation of the problem
that directly maps to the elements in Figure 1: a bipartite graph
where nodes in one partition are features (for instance, actors),
nodes in the other partition are items (for instance, items), and
an edge exist between an item i and a feature j iff Wij = 1.
Items are associated with their corresponding weights in the
aggregate interaction vector v (by capacity-bounded connec-
tions to an artificial source node), and features are associated
with their corresponding weights in the aggregate preference
vector h (by capacity-bounded connections to an artificial sink
node. The result is shown in Figure 2.

In comparison with the previous formulation, we switch
the objective function from minimizing reconstruction error
||v−Wh||2 to that of minimizing v−Wh; the reconstruction
error becomes one-sided (in other words v−Wh ≥ 0) and the
objective function becomes linear. Notice that this formulation
corresponds to a specific class of linear optimization functions
equivalent to maximum flow problem. This allows us to tap
into its rich literature and use any of the state-of-the-art
algorithms for maximum flow problem.

Complexity. We used the Goldberg and Tarjan algorithm with
FIFO heuristic [5] that has a complexity O(nm). However,
any algorithms for network flow can be utilized as well.

Example. Figure 2 provides the augmented graph correspond-
ing to running example. The output we obtained is Wia = 1.0,
Wib = 0.99, Wjb = 0.01, Wjc = 1.0. While the solution is
similar to that of previous approach, the algorithm was almost
10 times faster.

Comparison of two approaches. Both FR-AGG-h-LS and
FR-AGG-h-NF tried to compute W given v and h. There
are a number of differences between the two approaches.
FR-AGG-h-LS uses L2 norm for computing the reconstruc-
tion error while FR-AGG-h-NF uses L1 norm. This has the
effect that solution provided by FR-AGG-h-LS is always
optimal. As described previously, the reconstruction error of
FR-AGG-h-NF is one sided and (v − Wh ≥ 0 always).
This results in both algorithms potentially providing different
solutions to the same problem.

We can compute the effectiveness of the solution provided
by FR-AGG-h-NF by comparing the ratio of its L2 norm
with that of the optimal solution provided by FR-AGG-h-LS.
Theoretically, this ratio can be as worse as l

√
n. However, our

empirical experiments show that, in practice, the quality of the
solutions provided by both methods are comparable.

Another major factor in the accuracy of the algorithms is
the mechanisms used to estimate W (for FR-AGG-W-LS)
and h (for FR-AGG-h). We had previously described few
application specific mechanisms to estimate the respective
variables. However, the quality of the feature ranking is heavily
contingent on the quality of input quantities (h or W). As we
will later show in experiments, given an accurate input, our
algorithms provide optimal solutions for feature ranking.

IV. FEATURE RANKING WITH INDIVIDUAL INTERACTION

INFORMATION

In this section we consider the scenario where information
about individual users’ visits is available. In other words,
we possess the matrix V where each column provides the
normalized interaction count of each item in the database for a
specific user. As the user interaction patterns can be described
by equation WH = V , we strive to factorize V into the
component matrices - a feature-item transition matrix W
and an individual preference matrix H . However, recall that
our ultimate goal is to compute the item-feature visit vector
Xi for each item that can be estimated by the equation Wi.◦h,
where h is obtained by averaging column-wise vectors of H .
We assume that, for each user u, the user-feature preference
H.u is sparse, as discussed in section II-C.

Non-Negative Factorization (NMF). Non-negative factor-
ization (NMF) is a powerful technique that was originally
proposed as a method for finding matrix factors with parts-of-
whole interpretations [13]. Given a nonnegative matrix Rn×m

(where all elements have a value greater than or equal to zero)
and a positive integer r, NMF aims at finding two nonnegative
matrices (factors) Pn×r and Qr×m such that the matrix product
PQ is as close as possible to the original matrix R. This results
in an approximation problem where the goal is to minimize
an error function that measures the divergence between PQ
and R. The two most popular error functions are L2 norm and
Kullback-Leibler divergence.

We will show that our problem of decomposing V into
matrices W and H can naturally be expressed as a constrained
NMF problem.

Problem 5: Given a database D and an individual in-
teraction matrix V determine a non-negative feature-item
transition matrix W ≤W and a sparse individual preference

465

matrix H that minimizes reconstruction error, Error(V,WH)
and respects the stochasticity constraints for W and H .

Notice that this problem is different from problems 3 and
4 (Wh = v) defined in the previous section where the only
available information was an aggregate interaction vector v.
The lack of information there made it impossible to solve
simultaneously for W and h. In Problem 5, the presence of
an individual interaction matrix V along with the sparsity
constraints provides enough information allowing to find both
factors W and H at once.

Traditionally, NMF algorithms identify both (i) a set of
latent features and (ii) their weights. We assume a process
wherein we are aware of the features for which users consume
an item (e.g., users are drawn to a movie due to some of
its actors), and use NMF only to estimate their weights. We
believe this use of NMF to identify feature weights but not
features themselves is novel in its own right.

Algorithm 3 FR-INDIV-MNMF

Input: Database D and individual interaction matrix V
1: W = Estimate feature-item presence matrix
2: H0 = Initialize a column-wise sparse individual preference

matrix using setCover (Step 1)
3: Compute W1, H1 = M-NMF(W,H0) (Step 2)
4: W,H = Impose stochastic constraints (Step 3)
5: Compute h = average(H)
6: Compute Xi = Wi· ◦ h ∀i ∈ [1, n] (Step 4)
7: return X = {X1, X2, . . . , Xn}

Challenges. The classical NMF does not have any constraint
other than the non-negativity of matrices W and H , making a
direct application of Lee and Sung algorithm [13] inappropriate
in our case. In fact, the factors produced by this algorithm may
not respect the column stochasticity and sparsity constraints
that our factors W and H need to satisfy. Adding general linear
constraints to NMF results in a quartic constrained problem
that can be solved using the slow “additive” update rules. For
instance, Hoyer [9] has proposed a NMF algorithm in which
very general sparsity constraints on the factors can be specified.
However, perhaps as a consequence of the generality of this
algorithm, the proposed complex algorithm uses an “additive”
iterative updates based on gradient descent approach (rather
than “multiplicative” as in [13]) which significantly slows
the convergence. Moreover, there does not appear to be any
guarantee of convergence.

Unlike the factors produced by Hoyer algorithm, our fac-
tors are subject to a very specific sparsity and stochasticity
constraints. The sparsity in H should be column-wise to reflect
the fact that a user cannot be interested in all the features of the
database. This constraint is captured through |H.u| ≤ s ≪ ℓ.
The sparsity in W can be seen as set of equality constraints
that impose that some entries in W are known and hence
should not be update during the factorization process. This
constraint is captured through the constraint W ≤ W . Given
that some entries are known in the factors makes our problem
different from any other NMF algorithm. Hence we refer to
our problem as the Marginal NMF problem, and develop a
factoring algorithm that uses “multiplicative” update rules to
speed up the factorization and exhibits provable convergence

guarantee. Finally, the stochasticity constraints impose that W
rows and H columns sum to one at the end of the factorization.

Our proposed method. We choose Kullback-Leibler diver-
gence D(V ||WH) in order to measure the reconstruction error
between V and WH . This choice (instead of other measures
such as L2 distance) allows us to design an algorithm that
preserves the column stochasticity constraints in the solution.
In what follows, we propose a four-step algorithm (Algorithm
3) to solve the problem of ranking item features in the presence
of individual interaction matrix V . Our approach has many
novel modifications compared to previous algorithms [13], [9]
to also handle the specific sparsity and stochastic constraints
that the factors W and H need to satisfy. In the first step,
we show how to impose sparsity constraints over H using
Set-Cover techniques. In the second step, we describe the
modifications necessary to the NMF algorithm to compute non-
negative factors W and H that respect all sparsity constraints.
In the third step, we show how to modify W and H to also
respect the stochastic constraints. The last step describes how
to compute the item-feature visit vector of each item given
feature-item transition matrix W and individual preference
matrix H .

Step 1: Imposing sparsity constraints over H . Recall from
Section II that we impose a (row) sparsity constraint over the
factor W by assuming a sparse binary matrix W such that
W ≤ W . An entry (W)ij = 0 iff item i does not contain
feature j. A seemingly similar approach can be used to also
impose (column) sparsity constraints over the factor H by
defining a sparse binary matrix H such that H ≤ H , where
an entry (H)jk = 0 if user k has not visited any item that
contains feature j. However, this straightforward approach may
not generate adequate sparsity constraints, since the union of
distinct features of the items that a user has visited may be
quite large.

Therefore, we consider a modification of this naive ap-
proach, where we consider the items visited by any user k,
and derive from this the minimum set of distinct features that
covers these items. In other words, for each user k we compute
column vector H .k ∈ {0, 1}ℓ such that |{j : Hjk > 0}| is
minimized subject to

{j : Hjk > 0} = {j : ∃i s.t. (W)ij > 0 ∧ Vik > 0}

Computing each column vector H .k is equivalent to solv-
ing an instance of the Set-Cover problem [4]. Although the
problem is NP-complete, we use a well-known greedy al-
gorithm that achieves an approximation factor bounded by
ln(|{i : (V)ik > 0}|) + 1.

The following lemma describes an useful relationship be-
tween W , H and V .

Lemma 1: For all i, k, (WH)ik = 0 implies Vik = 0. In
other words, (WH) ≥ V

Proof: If the quantity Vik is non-zero, this implies that
item i was visited by user k. However, consider the quantity
(WH)ij . The only way it can be zero is if the set of features

in the preference vector of the user k, i.e., {r : (H)rk > 0}
is completely disjoint from the set of features that appear
in item i, i.e., {r : (W)ir > 0}. However, our set-cover

466

based approach of computing H prevents this from happening,
because if user k has visited item i, then at least one of the
features of the item should appear in the user preference vector.

Step 2: Iterative algorithm with multiplicative update rules.
In the second step, we propose modifications to the algorithm
[13] to discover factors W and H such that the reconstruction
error D(V ||WH) is minimized.

Let us elaborate a bit more on the sparsity constraints.
The constraints essentially dictate which entries of W and H
should be zeros, while the remaining entries are to be treated
as unknown variables which need to be filled with positive
values. We thus refer to the former entries as constants and to
the latter entries as variables. Moreover, to make our algorithm
(as well as the proof of convergence) simpler to explain, we
make a small modification to the sparsity constraints: rather
than zero, each constant entry of W and H is assigned a very
small constant value of ǫ which remains unchanged throughout
the algorithm’s execution.4 Note however, that we do not make
any modifications to V , which may contain many zeros.

The algorithm in [13] first initializes W and H to random
positive matrices, and then performs the following multiplica-
tive update rules until convergence:

Hjk ← Hjk

∑

i

WijVik∑
r
WirHrk

∑

i Wij

(1)

Wij ←Wij

∑

k

HjkVik∑
r
WirHrk

∑

k Hjk

(2)

We discuss the modifications necessary for applying this
algorithm to our problem. First, the initialization step has to
be modified. We initialize the constant entries of W and H to a
small positive value ǫ (as explained above). We then initialize
the remaining variable entries to random positive quantities.
Thus, W and H do not contain any zeros.

Next, we note that the updates cannot be applied to all
entries of W and H , because then the constant entries will
change, thus violating the sparsity constraints. Instead, the
update rules are applied only to the variable entries of W and
H .

The following lemmas and theorem focus on showing that
even though the original algorithm in [13] is now restricted
to only updating the (variable) parts of W and H , it still has
provable convergence characteristics5.

Lemma 2: After every iteration under the update rules
rules (1) and (2), the variable entries of W and H remain
non-zero.

Proof: To prove this, we need to show that the multi-
plicative factor can never become zero. Consider a variable
entry Hjk and the corresponding update rule (1). The only
way in which the multiplicative factor can become zero is

4Our algorithm will correctly run even if each constant entry of W and H
is assigned the value zero; but the convergence proof is more elaborate.

5Strictly speaking, we do not prove convergence; rather we prove that the
reconstruction error is non-increasing at each iteration.

if the quantity
∑

i WijVik (i.e., the dot product of the two
vectors W.j and V.k) becomes zero. But the variable entries
of Wij represent the set of items that contain feature j, while
the variable entries of Vik represent the set of items visited by
user k. Since Hjk is itself a variable, we know that user k has
visited at least one item containing feature j. Thus the two
sets overlap, and the dot product of the two vectors W.j and
V.k cannot be zero. A similar argument can be used to show
that the variable entries in W remain non-zero.

Theorem 1: The reconstruction error D(V ||WH) is non-
increasing under the update rules (1) and (2) when restricted
to the variables of W and H .

We do not include the proof due to space constraints. Our
proof is obtained by taking into consideration the impact of
sparsity constraints in the corresponding theorem in [13], i.e.,
only the variable entries of W and H are updated. We also
show that our update rules are well behaved even if some of
the entries V are zero.

Step 3: Imposing stochastic constraints on W and H .

The matrices W and H produced by Step 2 satisfy the
sparsity requirements, however, they may not satisfy the col-
umn stochastic constraints, which requires that the weights
of each column of W and H sum to 1. In this step we
describe a procedure for further modifying W and H such
that the stochastic constraints are satisfied. We make use of
the following theorem by Ho and Dooren [7].

Theorem 2: Let W , H be a stationary point (local minima)
for the NMF problem of factorizing V with reconstruction
error D(V ||WH). Then WH can be further factored into the
following form

WH = Pm×ℓDl×ℓQℓ×n

where P is column stochastic, Q is row stochastic, and D is
diagonal non-negative where

∑

i Dii =
∑

ij Vij . Furthermore,
if V is column stochastic, then DQ is column stochastic.

The factorization in the above theorem is accomplished as
follows. Define the normalization factors DW and DH (both
ℓ × ℓ diagonal matrices) as the column sum of W and row
sum of H , respectively. Then P is obtained by dividing each
column of W by its non-zero column sum. Thus PDW = W .
Likewise, Q is obtained by dividing each row of H by its non-
zero row sum. Thus DHQ = H . If we define D = DWDH ,
then clearly WH = PDQ.

This theorem immediately suggests the computation that
needs to be done in Step 3. We factor the WH returned in
Step 2 into PDQ as described above, and since V is known
to be column stochastic, we return W ′ = P and H ′ = DQ.
We note that W ′ and H ′ satisfy column stochastic as well as
sparsity constraints.

Step 4: Computing item-feature visit vectors Xi. Once the
feature-item transition matrix W and individual preference
matrix H are obtained, then the feature ranking of any item
can be computed as follows. First, compute the aggregate
preference vector h by averaging all column-wise vectors
H.j ∈ H , then perform a component wise multiplication

467

between the item’s feature transition vector Wi. and h, i.e.
Xi = Wi. ◦ h.

V. EXTENSIONS

In this section, we generalize the user-item interaction
model. Previously, our model assumed that user u first picked
a single feature j based on their individual preference vector
hu and then selected an item i containing j with probability
proportional to Wij . However, we now relax that constraint
and allow user to pick a small subset of features based on
their preferences. Intuitively, our prior model dictated that the
user watched a movie either because it starred Tom Hanks or
it was directed by Steven Spielberg but not for both. We now
generalize by allowing such a possibility.

In this paper, we assume that composite features are
represented as subset of features, but within each subset the
relative weights of features are the same. A more general
model of composite features (with varying relative weights of
features within each subset) requires decomposing matrix V
into three matrices (user-item, composite feature-item, com-
posite feature-weight), which goes beyond NMF and is the
focus of future research. Nevertheless, we show in experiments
that our algorithms perform reasonably even for our restricted
composite features model.

Formally, we allow a tunable parameter p that controls the
maximum feature subset size. For eg, a value of p = 2 means
that users can express their preference over all individual and
pairs of features. We refer to each distinct feature subset as
a composite feature. Given an item i with features x, y, z and
p = 2, the composite features are {x}, {y}, {z}, {x,y}, {x,z}
and {y,z}. As mentioned above, we assume that each individual
feature within a composite feature has equal weight. i.e. both
x and y have equal weight within {x, y}.

The required changes in our data model is surprisingly
simple. While each item is still described by a set of features,
the individual preference vector hu is defined over compos-
ite features. hu is a stochastic vector and user picks up a
composite feature j with probability proportional to (hu)j .
The feature-item transition matrix W is also now defined over
composite features. Each cell Wij provides the probability that
an user will consume item i given composite feature j. There is
no change in aggregate or individual interaction information (v
or V). The problem variants FR-AGG and FR-INDIV are now
defined over composite features where we need to determine
item-composite feature visit vectors denoted by Xi. All our
algorithms are oblivious to the transition between features to
composite features.

Feature Ranking with Composite Features. While the con-
cept of composite feature makes our model more realistic,
our objective remains ranking the individual features based
on their contribution to the item’s popularity (such as number
of visits). The output of algorithms for problems FR-AGG and
FR-INDIV provide item-composite feature visit vectors, Xi.
Each component of (Xi)j can be interpreted as the contribution
of composite feature j to the popularity of item i. This can be
transformed into a non-stochastic distribution over individual
features. Specifically, for each individual feature f and com-
posite feature C, we use the expression

∑

C(Xi)CI(f, C).
Intuitively, we identify all the composite features containing f

and aggregate their corresponding component in Xi. I(f, C)
denotes a function that returns 1 if f ∈ C and returns 0 other-
wise. Suppose we have X{a} = 0.5, X{b} = 0.3, X{a,b} = 0.2

then it can be transformed to individual features as X
′

{a} =

X{a} +X{a,b} = 0.7 and X
′

{b} = 0.5. Even though the new

vector X ′ is no longer stochastic, it is an estimate of the
proportion of user interactions that can be attributed to each
individual features.

VI. EXPERIMENTS

We conducted a comprehensive set of experiments to
evaluate the effectiveness and efficiency of various methods
for ranking item features. The ranking quality is measured
within two scenarios: prediction of the most prominent feature
(precision@1) and overall ranking of item features (nDCG@k).
All our predictions are compared to those produced by two
different baselines against a predefined ground truth. We show
that utilizing the user visit information leads to a better ranking
in the case of niche content. In the quantitative evaluation,
we measured the execution time (cpu time) of our different
methods while varying different parameters. In what follows,
we first describe datasets used. Then, we present the ground
truth and different baselines and algorithms we implemented.
Finally, we report the qualitative and quantitative experiments
we conducted and discuss the obtained results.

A. Dataset

We conducted our experiments using the 10M MovieLens
dataset6, which describes the ratings given by a set of users
to a set of movies. This dataset is joined with cast data from
IMDB7, indicating which actors acted on each of the movies.
The mapping of our problem formulation to this dataset is the
following: (i) items are movies, (ii) features are actors in the
movies, and (iii) interactions are ratings. We consider all the
movies having at least 50 ratings, this yields 464K ratings by
5.7K users on 1, 500 movies, containing 3, 500 distinct actors.

Synthetic dataset generation. We created different synthetic
datasets by varying four parameters: n (# of items), ℓ (# of
features), m (# of users), and s (sparsity ratio). The item-
feature transition matrix W was generated in such a way
that the frequency distribution of features within synthetic
collections follows the observed Zipfian distribution of features
in movielens. The visit matrix V is created in the same way
as W . Finally, the individual preference matrix H is created
using several values of column-wise sparsity ratio s.

Implementation details. Our algorithms are implemented in
Python 2.7. All the experiments are performed on Linux
Ubuntu 12.10 machine, Intel Core i5 2.3 GHz processor, and
12 GB RAM.

B. Algorithms and evaluation metrics

Ground Truth. The IMDB data includes a list of actors sorted
by the importance of their roles in each movie, i.e. the first
actor is the star of the movie, etc. We use the starring order

6http://www.grouplens.org/node/73
7http://www.imdb.com

468

provided by IMDB as our ground truth. We conducted a user
study on Mechanical Turk8 to verify if IMDB based ground
truth is representative. For each Human Intelligence Task, we
showed a movie and asked users to pick the actor for which
they would like to watch the movie. In 92% of cases, users
picked the top actor from IMDB listing. To combat worker
unreliability, we designed rigorous pre-qualification questions
to filter movie savvy workers.

Baselines. We have designed two baselines, BLtc and BLnb to
rank item features. BLtc is an extension of the method used
to generate tag clouds[16]. It assumes that the importance of
a feature is (i) proportional to its popularity in the dataset
and (ii) independent from the item in which it appears. For
every feature f , we aggregate the number of ratings over
items that contain that feature which are normalized to obtain
a aggregate preference vector h. The per-item ranking of
features is obtained as Xi = Wi· ◦ h, where the weights Wi·

are assumed to be uniform. The main drawback of BLtc is the
naive transfer of the number of ratings from items to features.

The second baseline (BLnb) overcomes such a problem
by adapting a Naive Bayes (NB) algorithm to predict the
probability (score) of a feature (fi) as the fraction of ratings
(Y) achieved by items containing it. We first discretized the
number of visits Y into five classes (very popular,somewhat
popular,average,not popular, niche) using equi-depth his-
tograms. We assume random variables Y and F1,F2,. . .Fℓ

corresponding to the class of popularity (Y) and feature vector
components f1, f2, . . . fℓ. The parameters P (fi|Y = yk) for
i ∈ {1, 2, . . . l} and the distribution of P (Y) are estimated
using maximum likelihood as follows: P (fi|Y = yk) =
#I{Fi=fi,Y=yk}

#I{Y=yk}
(fraction of items having feature fi within yk

divided by the cardinality of yk); P (Y = yk) = #I{Y=yk}
|I| .

The raking of features of an item with yk ratings is given by
the corresponding feature probabilities P (fi|Y = yk).

Algorithms. When aggregate interaction information is avail-
able we use algorithms FR-AGG-W-LS, FR-AGG-h-LS

and FR-AGG-h-NF. The first two use L2 error function
while the latter uses L1. Algorithms FR-AGG-h-LS* and
FR-AGG-h-NF* represent variants of the previous methods
where the aggregate preference vector h∗ is given by a
domain expert. For individual interaction information, we use
algorithm FR-INDIV-MNMF.

Evaluation metrics. To measure the effectiveness of our
algorithms we use Precision@1 and nDCG@k. The former
measures the accuracy of predicting the most prominent feature
per item whereas the latter measures the quality of item
features ranking with respect to the ground truth. Precision@1
is the fraction of times where the most prominent feature
predicted by our algorithm agreed with the ground truth.
In our database, this corresponds to identifying the starring
actor in a movie. The nDCG@k is computed as the ratio of
the discounted cumulative gain of the top k most prominent
features identified by our methods with that of ground truth.
Efficiency of our algorithms is measured in cpu seconds. For
each experiment we reported the average of three runs.

8http://www.mturk.com

C. Qualitative Evaluation

In order to capture the impact of the prolificacy of features
on our methods and baselines, we created different sub-
sets corresponding to different prolificacy cut-off(pco) values
{3, 4, . . . 12}. For instance, a subset with pco = 3 contains only
those movies whose most prolific actor appears in at most 3
movies. Figure 3(a) illustrates the sizes of the different subsets
created.

Figure 3(b) plots the curves of precision@1 obtained by
our algorithms at different pco values. The figure shows that
all our methods outperformed both baselines in determining
the most prominent feature for niche items (pco ≤ 7). For
instance, in the case of pco = 3, FR-INDIV-MNMF achieved
the best precision@1 score (0.92) followed by FR-AGG-h-NF
(0.69) and FR-AGG-W-LS (0.58). We notice that from pco =
8 onward, BLtc got better predictions than our methods. This
is due to the bias introduced by the popularity of some actors.
In fact, it is easy to see that an actor who acts in more than
8 movies has a high probability of being the starring actor in
the movies he acted in. Further, we can see that our method
outperforms BLnb in almost all cases.

We would like to note that our algorithms are optimized
for ranking features in niche items (with low pco) where
other methods are inadequate. Items with pco ≥ 8 correspond
to the most popular movies with disproportionate amount of
ratings. The extremely skewed rating distribution distorts the
performance of our algorithms. For such cases, tag-cloud based
methods provide better results.

Figure 3(c) plots precision@1 scores obtained by different
variants of FR-AGG-h. These curves show that whenever a
better distribution of features in the aggregate preference
vector h∗ is known, the accuracy of FR-AGG-h-LS* and
FR-AGG-h-NF* is significantly improved. For instance, a
peak of precision@1 = 0.98 is observed at pco = 3.
Furthermore, the availability of h∗ leads to better predictions
even for items with prolific features (pco ≥ 8). One way
to compute h∗ is to use the IMDB cast information. For a
particular movie m, and an actor a acting in it, we compute
the score sma = 1/i, where i is the IMDB ranking position of
a in m. Then, h∗ is obtained by summing the scores of every
actor a across all movies he acted in.

In general, the quality of all our algorithms can be im-
proved by using domain knowledge if it can be specified
as fixed weights in matrix H (user-feature preference) or
in matrix W (feature-item dependency). Our algorithms will
treat them as constants and estimate the remaining parameters.
Handling a more general model of domain knowledge is a topic
for future research.

Ranking quality. Figure 4 reports the nDCG@k achieved
by our methods within different datasets corresponding to
different pco values. Unlike precision@1, the nDCG@k cap-
tures the quality of ranking the first k features per item. Not
surprisingly, our methods achieve a better ranking in the case
of niche items (low values of pco). Two observations can be
made here. (i) FR-AGG-h-NF shows a decreasing trend of
nDCG@k scores as k increases. The decreasing trend is am-
plified in the case of FR-AGG-h-NF*. Hence the apt usecase
for FR-AGG-h-NF* is to identify the most prominent feature

469

470

TABLE I. EXECUTION TIME OF FR-INDIV-MNMF ON SYNTHETIC

DATA VARYING m AND s.

#users (m) 5000 10000 15000 20000
time (sec) 4310.79 9168.48 12105.82 17154.14

sparsity (s) 0.0001 0.001 0.01 0.1
time (sec) 8707.14 8889.79 9707.35 11906.03

In fact, unlike the first experiment where the time achieved
by these two methods was almost constant, the runtime of
FR-AGG-W-LS and FR-AGG-h-LS increases significantly
with ℓ. In other words, increasing ℓ makes the problems more
complex by increasing the number of unknowns.

Two more experiments were conducted on
FR-INDIV-MNMF by varying the number of users n
and the sparsity ratio s. Table I reports the results. For
instance, a sparsity value s = 0.001 means that a user cannot
be interested in more than one per thousand features. The
main observation we can make here is that FR-INDIV-MNMF
is more sensitive to the number of users than to the sparsity
ratio.

VII. RELATED WORK

Non negative matrix factorization. Nonnegative Matrix Fac-
torization (NMF) is a powerful tool for data analysis with
enhanced interpretability. The seminal paper [13] utilized NMF
to identify matrix factors with parts-of-whole interpretations
[13] and introduced an iterative algorithm with multiplicative
update rules. The cost functions considered were L2 and
Kullback-Leibler divergence. Although many algorithms have
been proposed to solve the factorization problem, it seems
that none of them satisfies the constraints imposed by our
problem. [13] produces factors that may not respect the
column stochasticity and sparsity constraints on W and H .
While Hoyer [9], proposed a NMF algorithm in which very
general sparsity constraints on the factors can be specified,
the proposed complex algorithm uses a much slower“additive”
iterative steps and does not have convergence guarantees.

Attributes ranking. In recent years there has been some
interest in ranking attributes in relational databases. Das et
al. [3] orders attributes in order to choose a set of useful
attributes that were most influential in the ranking of items. In
contrast, our aim is to order the features based on the aggregate
or individual interaction count. Miah et al. [14] ranks item
attributes so as to maximize the “visibility” of items as defined
by the number of top-k queries they match. However, in our
problem we are interested in ranking attribute values rather
that the attributes themselves.

Feature Ranking. Feature selection [6], [12] is another seem-
ingly related work to ours. The aim of feature selection
algorithms is to identify the redundant/irrelevant features that
have a low score based on some scoring function that are then
discarded. However, our work differs from the extensive work
on feature selection because our goal is to rank item features
by leveraging user interaction and not to reduce the cost of
building models or discard irrelevant features. The scoring
function defines a global ranking of features while our aim
is to identify item specific feature ranking.

VIII. CONCLUSIONS

In this paper, we consider the feature ranking problem
that ranks features of an item by only considering user-
item interaction information such as visits. We motivated a
probabilistic preference model , defined two variants of the
problem based on the granularity of the interaction informa-
tion available and proposed different algorithms (based on
constrained convex optimization, network flow approximation,
and marginal NMF) to solve these variants. In the future, we
would like to investigate a variant where users can choose an
item through a weighted combination of features. We would
also like to use the sequential user-item interaction information
(such as a session) to perform feature ranking.

ACKNOWLEDGMENT

This work was done during the internship of Habibur Rah-
man and Saravanan Thirumuruganathan at Qatar Computing
Research Institute. The work of Habibur Rahman, Saravanan
Thirumuruganathan and Gautam Das is partially supported by
NSF grants 0812601, 0915834, 1018865, a NHARP grant from
the Texas Higher Education Coordinating Board, and grants
from Microsoft Research and Nokia Research.

REFERENCES

[1] M. S. Andersen, J. Dahl, and L. Vandenberghe. Cvxopt: A python
package for convex optimization, version 1.1.5. abel.ee.ucla.edu/cvxopt,
2012.

[2] Å. Björck. Numerical Methods for Least Squares Problems. SIAM,
Philadelphia, 1996.

[3] G. Das, V. Hristidis, N. Kapoor, and S. Sudarshan. Ordering the
attributes of query results. SIGMOD ’06, pages 395–406.

[4] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide

to the Theory of NP-Completeness. 1979.

[5] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum
flow problem. STOC ’86, pages 136–146, 1986.

[6] I. Guyon and A. Elisseeff. An introduction to variable and feature
selection. JMLR, 3:1157–1182, Mar. 2003.

[7] N.-D. Ho and P. V. Dooren. Non-negative matrix factorization with fixed
row and column sums. Linear Algebra and its Applications, 429:1020
– 1025, 2008.

[8] T. Hofmann. Learning what people (don’t) want. In Proceedings of the

12th European Conference on Machine Learning, EMCL ’01, pages
214–225, London, UK, UK, 2001. Springer-Verlag.

[9] P. O. Hoyer. Non-negative matrix factorization with sparseness con-
straints. JMLR, 5:1457–1469, Dec. 2004.

[10] M. Hu and B. Liu. Mining and summarizing customer reviews. KDD
’04, pages 168–177.

[11] M. Hu and B. Liu. Mining opinion features in customer reviews.
AAAI’04, pages 755–760, 2004.

[12] R. Kohavi and G. H. John. Wrappers for feature subset selection. Artif.

Intell., 97(1-2):273–324, Dec. 1997.

[13] D. D. Lee and H. S. Seung. Algorithms for non-negative matrix
factorization. In NIPS, pages 556–562, 2000.

[14] M. Miah, G. Das, V. Hristidis, and H. Mannila. Standing out in a crowd:
Selecting attributes for maximum visibility. ICDE ’08, pages 356–365,
2008.

[15] Y. Nesterov and A. Nemirovsky. Interior point polynomial methods in

convex programming, volume 13. SIAM Philadelphia, 1994.

[16] P. Venetis, G. Koutrika, and H. Garcia-Molina. On the selection of tags
for tag clouds. In WSDM, 2011.

[17] M. Wu. http://lithosphere.lithium.com/t5/science-of-social-blog/
The-Economics-of-90-9-1-The-Gini-Coefficient-with-Cross/ba-p/
5466, 2010. [Online; accessed 12-Feb-2013].

471

